

November 12, 2025

Jason Williamson, Code Enforcement Officer Town of Raymond 401 Webbs Mills Road Raymond, ME 04071

Re: Pre-Application for Subdivision Review

Sebago View Subdivision – 47 lots on 56 acres

Sebago View, LLC - Applicant

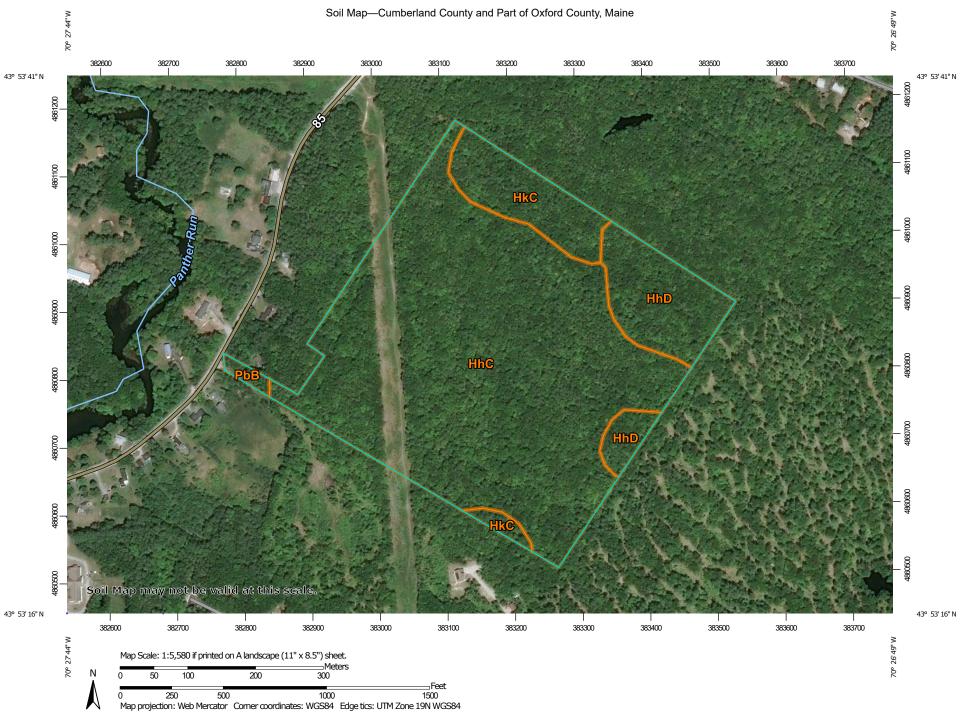
Dear Jason and Planning Board Members:

On behalf of Sebago View, LLC we are pleased to submit the enclosed application for Pre-Application Sketch Plan review of a proposed residential subdivision of a 56-acre parcel to create approximately 47 lots for residential use. The property is located in the Village Residential Zoning District and will include the construction of approximately 5,600 linear feet of new roadways, including street connections to Webbs Mills Road and Honey Hill Lane to provide two points of access to the project from Webbs Mills Road. A public water main will be installed in the roadway so that all lots will be served by public water and so that hydrants can be installed throughout the subdivision to provide fire protection. The direct road connection to Webbs Mills Road will travel through an easement that will be obtained from the owners of the property at 39 Webbs Mills Road.

The property contains a pole line and pipe line easement, which will need to be crossed in two locations by the new proposed roadways. We will work closely with the utility companies who own the easements to ensure that the project design will not negatively impact the utility infrastructure within the easements. We have also begun coordination with Portland Water District to model the anticipated water pressures at the higher elevations in the vicinity of proposed Lot 21 to ensure that the required fire flows at the new hydrants will be achieved.

All lots will require an on-site wastewater disposal system, and electrical utilities will be installed underground. A Site Location Permit will be required from the Maine DEP, and we anticipate multiple stormwater ponds will be constructed to provide Phosphorus Management and peak runoff control. The site does not contain any wetlands or vernal pools.

We would like to be placed on the next available agenda with the Planning Board to discuss this proposed subdivision as a sketch plan and to hear any preliminary concerns that the Board may have with our request. Upon your review of this information, please let us know if you have any questions or require any additional information.


Sincerely,

DM ROMA CONSULTING ENGINEERS

Dustin M. Roma, P.E.

Dustin Roma

President

MAP LEGEND

â

00

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Cumberland County and Part of Oxford County, Maine

Survey Area Data: Version 17, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jun 7, 2019—Jul 2, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
HhC	Hermon sandy loam, 8 to 15 percent slopes, very stony	45.9	77.9%
HhD	Hermon sandy loam, 15 to 35 percent slopes, very stony	7.0	11.9%
HkC	Hermon sandy loam, 8 to 20 percent slopes, extremely stony	5.5	9.4%
PbB	Paxton fine sandy loam, 3 to 8 percent slopes	0.4	0.7%
Totals for Area of Interest		58.9	100.0%

Cumberland County and Part of Oxford County, Maine

HhC—Hermon sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w9rd

Elevation: 0 to 1,080 feet

Mean annual precipitation: 31 to 65 inches Mean annual air temperature: 36 to 52 degrees F

Frost-free period: 90 to 160 days

Farmland classification: Not prime farmland

Map Unit Composition

Hermon, very stony, and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Hermon, Very Stony

Setting

Landform: Hills, mountains

Landform position (two-dimensional): Backslope, summit, shoulder

Landform position (three-dimensional): Mountainflank, mountainbase, side slope, nose slope, interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Sandy and gravelly supraglacial meltout till derived

from granite and gneiss

Typical profile

Oa - 0 to 2 inches: highly decomposed plant material

E - 2 to 3 inches: sandy loam Bhs - 3 to 9 inches: sandy loam

Bs1 - 9 to 16 inches: very gravelly sandy loam
Bs2 - 16 to 32 inches: extremely gravelly loamy sand
C - 32 to 65 inches: very gravelly coarse sand

Properties and qualities

Slope: 8 to 15 percent

Surface area covered with cobbles, stones or boulders: 1.1 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.03 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water capacity: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Monadnock, very stony

Percent of map unit: 8 percent Landform: Mountains, hills

Landform position (two-dimensional): Summit, shoulder, backslope

Landform position (three-dimensional): Mountainbase, mountainflank, side slope, nose slope, interfluve

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Peru, very stony

Percent of map unit: 3 percent Landform: Mountains, hills

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Mountainbase, mountainflank, side slope, nose slope, interfluve

Microfeatures of landform position: Closed depressions, open depressions, closed depressions, open depressions

Down-slope shape: Convex, concave Across-slope shape: Linear, concave

Hydric soil rating: No

Tunbridge, very stony

Percent of map unit: 3 percent Landform: Mountains, hills

Landform position (two-dimensional): Backslope, summit, shoulder

Landform position (three-dimensional): Mountainflank, mountainbase, interfluve, nose slope, side slope

Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Brayton, very stony

Percent of map unit: 1 percent Landform: Hills, mountains

Landform position (two-dimensional): Toeslope, footslope
Landform position (three-dimensional): Mountainbase,
mountainflank, side slope, nose slope, interfluve
Microfeatures of landform position: Open depressions, closed

depressions, closed depressions, open depressions

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Cumberland County and Part of Oxford County, Maine

Survey Area Data: Version 17, Jun 5, 2020